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Abstract—Abstract. The main focus of this article is studying the
stability of solutions of nonlinear stochastic heat equation and give
conclusions in two cases: stability in probability and almost sure
exponential stability. Also, We prove that the Fourier coefficient solution
is mean consistent. The main tool is the study of related Lyapunov-type
functionals. The analysis is carried out by a natural N−dimensional
truncation in isometric Hilbert spaces and uniform estimation of moments
with respect to N .

I. INTRODUCTION

In this article we study the stability of solutions of semi-linear
stochastic heat equations

ut = σ24u + A(u) +B(u)
dW

dt

with cubic nonlinearities A(u) in one dimensions in terms of
all systems parameters, i.e., with non-global Lipschitz continuous
nonlinearities. Our study focusses on stability of analytic solution
u = u(x, t) under the geometric condition

σ2 π
2

l2
− a1 =

σ2 π2 l2 − a1 l
2

l2
: = γ > 0,

where 0 ≤ x ≤ l such that D = [0, l].
Many authors have treated stochastic heat equations (e.g. Chow [2]
and DaPrato and Zabzcyk [4]), semi-linear stochastic heat equations
(e.g. Chow [2], DaPrato and Zabzcyk [4], and Schurz [19]) or
nonlinear stochastic evolution equations (e.g. Grecksch and Tudor [8]
and Schurz [18]). Also, some authors study the stability of stochastic
heat equations like Fournier and Printems [5] study the stability of the
mild solution. Walsh [22] treats the stochastic heat equations in one
dimension. Chow [2] studies that the null solution of the stochastic
heat equation is stable in probability by using the definition. Recall
that

L2(D) = {f : D→ R |
∫
D
|f(x)|2 dµ(x) < ∞},

where µ is the Lebesgue measure in one dimensions.
The paper is organized as follows. Section II states that the strong

Fourier solution of equation (18) is proved. We write the solution
using the finite-dimensional truncated system verifies properties of
finite-dimensional Lyapunov functional. Section III discusses the
stability of the strong solution of equation (18) is stable in prob-
ability and almost sure exponential stability. Eventually, Section IV
summarizes the most important conclusions on the well-posedness
and behaviour of the original infinite-dimensional system (18).

II. TRUNCATED FOURIER SERIES SOLUTION AND

FINITE-DIMENSIONAL LYAPUNOV FUNCTIONAL

Consider the stochastic nonlinear heat equation with additive noise

ut = σ2uxx + (a1 − a2‖u‖2L2(D))u + b
dW

dt
(1)

with the initial condition u(x, 0) = f(x)with f ∈ L2(D) (initial
position) and

W (x, t) =

∞∑
n=1

αnWn(t)en(x)

and en =

√
2

l
sin(

nπ x

l
) driven by i.i.d. standard Wiener processes

Wn with E[Wn(t)] = 0, E[Wn(t)]
2 = t. The solution of equation

(18) in terms of Fourier series is proved by Schurz [19] and given
by

u(x, t) =

∞∑
n=1

cn(t) en(x). (2)

Theorem 1: Assume that
∞∑

n,m=1

α2
n < ∞, ∀u ∈ L2(D)∩C1(D×

R1
+) with ux ∈ L2(D) and W (x, t) =

∞∑
n,m=1

αnWn(t)en(x), then

for all t ≥ 0, x ∈ D = (0, lx), the Fourier-series solutions (2) have
Fourier coefficients cn satisfying (a.s.)

d

dt
cn(t) =

[
−σ2 π

2 n2

l2
+ a1 − a2

∞∑
k=1

(ck)
2

]
cn (3)

+ bαn
dWn

dt
.

Proof 1: See Schurz [19].
We need to truncate the infinite series (2) for practical computa-

tions. So, we have to consider finite-dimensional truncations of the
form

uN (x, t) =

N∑
n=1

cn en (4)

with Fourier coefficients cn satisfying the naturally truncated system
of stochastic differential equations (SDEs).

d

dt
cn(t) =

[
−σ2 π

2 n2

l2
+ a1 − a2

∞∑
k=1

(ck)
2

]
cn (5)

+ bαn
dWn

dt
.

where λn = (nπ
l
)2.

Assume that σ2 π2

l2
> a1. Define the Lyapunov functional VN as

follows

VN (c) =VN ((cn)n=1,...,N ) (6)

:=

N∑
n=1

(
σ2λn − a1

)
(cn)

2 +
a2
2

(
N∑
n=1

(cn)
2

)2

for N ∈ N.
This functional is a modification of a functional appeared in Schurz

[20]. It is clear that this function is of Lyapunov-type because it is
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nonnegative and smooth as long as a2 ≥ 0, radially unbounded if
additionally σ2 π2 > a1 l

2. Equipped with Euclidean norm

|c|l2
N

=

√√√√ N∑
n=1

c2n

Lemma 1: Consider the Lyapunov functional defined in equation
(6), and let

σ2 π
2

l2
− a1 =

σ2π2 − a1 l2

l2
=: γ > 0.

Then ∀u ∈ L2(D) :

VN (u) ≥ γ ‖u‖2L2(D) (7)

Proof 2: See [9].
Lemma 2: Assume that a2 ≥ 0. Then, ∀N ∈ N, the functional

VN is
(a) nonnegative and positive semi-definite if σ2π2 ≥ a1 l

2 or a2 ≥ 0,
(b) positive-definite if σ2π2 > a1 l

2,
and
(c) satisfies the condition of radial unboundedness

lim
|c|

l2
N
→+∞

VN (c) = +∞, if [σ2π2 − a1 l
2]+ + a2 > 0.

Proof 3: See [9].

III. STABILITY OF FOURIER SOLUTIONS

Recall equation (5) governed by

d

dt
cn(t) =

[
− σ2 π

2 n2

l2
+ a1 − a2

∞∑
k=1

(ck)
2
]
cn (8)

+ bαn
dWn

dt

=
[
−σ2λn + a1 − a2‖uN‖2

]
cn + bαn

dWn

dt
. (9)

To simplify, let

f(uN ) = −σ2λn + a1 − a2‖uN‖2

and

g(uN ) = bαn

Definition 1: The trivial solution of system (8) (in terms of norm
‖u‖L2(D)) is said to be stochastically stable or stable in probability,
if for 0 < ε < 1 and r > 0, ∃ a δ = δ(ε, r) such that, ∀ t ≥ δ,
we have

P
{
‖u(t)‖L2(D) < r

}
≥ 1 − ε. (10)

whenever δ > 0.
Lemma 3: If ∃ a positive-definite function V ∈ C2,1(Rd ×

[0, ∞), R+) such that LV (x, t) ≤ 0 and ∀ (x, t) ∈ Rd× [0, ∞),
then the trivial solution of the equation

dX(t) = f(x(t), t) dt + g(x(t), t) dW (t) (11)

is stochastically stable.
Proof 4: See Arnold [1].
Theorem 2: Let

V (u(t)) = σ2‖∇u‖2L2(D) − a1‖u‖
2
L2(D) +

a2
2
‖u‖4L2(D).

If (1− a2
N∑
n=1

c2n)

N∑
n=1

cn > 0, then the trivial solution of equation

(8) is stochastically stable i.e., stable in probability.

Proof 5: From Lemma 2, we know that VN (u(t)) is positive-
definite if ∀n ∈ N, σ2λn − a1 > 0. Define the linear operator
L as in Schurz [19]

L =

N∑
n=1

[
−σ2 π

2 n2

l2
+ a1 − a2

N∑
k=1

(ck)
2

]
cn

∂

∂ cn
+
b2

2

N∑
n=1

α2
n
∂2

∂ c2n
.

The first and second partial derivative of VN (t) with respect to cn
are

∂ VN
∂ cn

= 2

N∑
n=1

[(
σ2 λn − a1

)
+ a2

(
N∑
n=1

c2n

)]
cn

and

∂2 VN
∂ c2n

= 2

N∑
n=1

(
σ2 λn − a1

)
cn + 4a2

(
N∑
n=1

cn

)2

+ 2a2

N∑
n=1

c2n.

Then

LVN (cn(t)) = −2

(
N∑
n=1

(
σ2 λn − a1

)
cn

)2

− 2a2

N∑
n=1

(
σ2 λn − a1

)( N∑
n=1

c2n

)2

− 2a2

N∑
n=1

c2n

(
1− a2

N∑
n=1

c2n

)
N∑
n=1

[
(σ2 λn − a1)

]
cn.

But by our assumption that

(1− a2
N∑
n=1

c2n)

N∑
n=1

cn > 0,

then Thus
LVN (cn(t)) ≤ 0.

So by Lemma 3, applied to truncation of (8), the trivial solution of
system (8) is stochastically stable.

corollary 1: Let p ≥ 2 and let V be as above. Imposing the
same assumptions as in Theorem 2 with N → +∞, then we have
∀ 0 ≤ t ≤ T,

E‖u(t)‖pL2(D) ≤
1

min (1, γ)
EV

p
2 (u(0)).

Proof 6: We know, from the definition of V (u), and Lemma 1 that
‖u‖2L2(D) ≤

V (u)
γ
. it is easy to show that

E‖u(t)‖pL2(D) ≤
1

min (1, γ)
EV

p
2 (u(0)).

corollary 2: ∀ p ≥ 2 and ∀ 0 ≤ t ≤ T, with σ2λ1 − a1 > 0,
we have ∀ 0 ≤ t ≤ T.
1) If a2 ≥ 0, then

E‖u(t)‖pL2(D) ≤
EV

p
2 (u(0))[

σ2λ1 − a1
] p

2

.

2) If a2 > 0, then

E‖u(t)‖pL2(D) ≤
( 2

a2

) p
4 EV

p
4 (u(0)).

Proof 7: 1) Note that we have
(
σ2λ1 − a1

)
‖u(., t)‖2L2(D) ≤

VN (u(t)). Since λn is increasing in n,[
σ2λ1 − a1

]
‖u(t)‖2L2(D) ≤ VN (u(t)).
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So,

‖u(t)‖2L2(D) ≤
VN (u(t))

σ2λ1 − a1

Pull over expectation, then

E‖u(t)‖2L2(D) ≤
EV (u(t))

σ2λ1 − a1
.

By using Corollary 1, we have

E‖u(t)‖2L2(D) ≤
EV (u(0))

σ2λ1 − a1
.

2) From the definition of V (u(t)), it is clear that
a2
2
‖u(t)‖4L2(D) ≤ V (u(t)), so(a2

2

)
‖u(t)‖4L2(D) ≤ VN (u(0)).

Now, take the expectation to both sides, and we get(a2
2

)
E‖u(t)‖4L2(D) ≤ EVN (u(0)),

i.e., ∀ 0 ≤ t ≤ T,

E‖u(t)‖2L2(D) ≤
( 2

a2

) 1
2EV

1
2 (u(0)).

Remark: The corollary 2 means that ∀ t ≥ 0 :

E‖u(t)‖2L2(D) ≤ min
{ EVN (u(0))[
σ2λ1 − a1

] , ( 2

a2

) 1
2EV

1
2 (u(0))

}
.

Definition 2: The trivial solution of system (8) is said to be a.s.
exponentially stable if

θ(uN ) := lim sup
t→∞

1

t
log ‖u(t)‖L2(D) < 0 (a.s.)

(12)
∀u(0) ∈ D. The quantity of the left hand side of (12) is called the
sample top Lyapunov exponent of u.

Lemma 4: [Ø ksendal] [16]. Let v(t) be a nonnegative integrable
function such that

v(t) ≤ C + A

∫ t

0

v(s) d s, 0 ≤ t ≤ T (13)

for some constants C, A. Then C ≥ 0 and

v(t) ≤ C exp(At), 0 ≤ t ≤ T. (14)

Theorem 3: Let V (u(t)) as in Theorem 2. If (1 −

a2

N∑
n=1

c2n)

N∑
n=1

cn > 0, then the norm of the trivial solution of

N−dimensional system (8)is a.s. exponentially stable with sample
top Lyapunov exponent

θ(uN ) ≤ 0.

Proof 8: Return to the analysis of finite N−dimensional equation
(5). Recall that

V (uN (t)) = σ2‖∇uN‖2L2(D) − a1 ‖uN‖2L2(D) +
a2
2
‖uN‖4L2(D)

=

N∑
n=1

[
σ2λn − a1

]
(cn(t))

2 +
a2
2

( N∑
n=1

(cn(t))
2
)2

where V (uN ) = VN (c) and from Theorem 2 we know that

LVN (cn(t)) = −2

(
N∑
n=1

(
σ2 λn − a1

)
cn

)2

− 2a2

N∑
n=1

(
σ2 λn − a1

)( N∑
n=1

c2n

)2

− 2a2

N∑
n=1

c2n

(
1− a2

N∑
n=1

c2n

)
N∑
n=1

[
(σ2 λn − a1)

]
cn.

But by our assumption that

(1− a2
N∑
n=1

c2n)

N∑
n=1

cn > 0,

so
LVN (cn(t)) ≤ −k,

where k ≥ 0.

Using Dynkin’s formula, we find that

EVN (c(t)) = EVN (c(0)) + E
∫ t

0

LVN (cn(s))d s

≤ EVN (c, v)(0) − k t

so

E‖uN (t)‖2L2(D) ≤ EVN (c(t)) ≤ EVN (c(0)) − k t

using extended Gronwall lemma, Lemma 4, gives us

E‖uN (t)‖2L2(D) ≤ EVN (c(0)) e−k t

hence

logE‖uN (t)‖2L2(D) ≤ logEVN (c(0))− k t

thus

lim sup
t→∞

logE‖uN (t)‖2L2(D)

t
≤ lim sup

t→∞

logEVN (c(0))

t
− k

≤ b22 ‖α‖2l2
4N×N

− 2κ ≤ −k. (15)

If (1− a2
N∑
n=1

c2n)

N∑
n=1

cn > 0 then the left side of identity (12) is

negative and the trivial solution of the velocity v of N−dimensional
system (8) is a.s. exponential stable.
Finally, we observe that all the previous estimates are uniformly
bounded as N → ∞. Hence, we arrive at

lim sup
t→∞

logE‖u(t)‖2L2(D)

t
< 0. (16)

corollary 3: Let V (u(t)) as in Theorem 2. If

(
1− a2

N∑
n=1

c2n

)
,

then the norm of the v-component of the trivial solution of infinite-
dimensional system (18) is a.s. exponentially stable with sample top
Lyapunov exponent

θ(v) ≤ −k < 0.

Proof 9: Return to the proof of previous theorem, theorem 3 and
take the limit N to +∞ after the estimation process (16) in the
sample Lyapunov exponent θ(vN ).
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IV. EXPLICIT REPRESENTATION

Define the linear-implicit Euler method as the following:

cn(tk+1) = cn(tk) + hk fn(c(tk))cn(tk+1) + bαn4kWn (17)

where fn(c(tk)) = −σ2 n2π2

l2
+ a1 − a2

N∑
n=1

c2n.

Theorem 4: Assume that
∣∣ci,jn,m(tk)

∣∣ <∞, and

a2 ≥ 0, and ∀n ∈ N :
[
− σ2 (λn + βm) + a1

]
h2
k < 1.

Then the method (LIEM) governed by equation (17) has the non-
exploding explicit representation

cn(tk+1) =
cn(tk) + bαn4kWn

1 − hk fn(c(tk))
(18)

and where fn(c(tk)) as above, 4kW i,j
n,m = Wn(tk+1) −Wn(tk)

and hk = tk+1 − tk.
Proof 10: See Schurz [19].

V. LOCAL MEAN CONSISTENCY ON NUMERICAL SOLUTIONS

To do numerical solution of the Fourier coefficient of the heat
equation, it is better to start with mean consistent. In [11], we proved
that the solution of the nonlinear stochastic wave equation is mean
consistent. Also, in [12], we proved that solution is mean square
consistent.

Definition 3: A numerical approximation ĉn of the n−th Fourier
coefficient cn along the partition of [0, T ] is said be mean consistent
with rate r0 > 0 onD iff ∃Kc

0 = consistency constant ∀ 0 ≤
t ≤ t+h ≤ T , where h is sufficiently small, i.e., 0 < h ≤ δ ≤ 1,
and ∃ a positive function V (c(t)) such that

‖E (c(t+ h|t,Ft)− ĉ(t+ h|t,Ft))‖H ≤ Kc
0 (V (c(t))) hr0

provided ĉ = (cn)n=1,...,N ∀u(t) ∈ H, where H :={
u ∈ L2(D)

}
, and ‖u‖H = ‖c‖2L2(D) : (Ft, B(L

2))−measurable,
then

‖E (c(t+ h|t,Ft)− ĉ(t+ h|t,Ft))‖H ≤ Kc
0 (V (c(t))) hr0

where ĉ(t + h|t, c(t)) = ĉ(t) +
∫ t+h
t

f(c(s)) ds +∫ t+h
t

bαn dW (s) ds.
Recall that, in the Fourier space ‖u‖2L2(D) = ‖c‖

2
l2 . Now,

cn(t+ h) =
cn(tk) + b αn4kWn

1− hk fn(c(tk))

=
cn(tk)− hk fn(c(tk))cn(tk) + hk fn(c(tk))cn(tk)

1− hk fn(c(tk))

+
b αn4kWn

1− hk fn(c(tk))

=
[1− hk fn(c(tk))] cn(tk)

1− hk fn(c(tk))
+ hk

fn(c(tk))

1− hk fn(c(tk))

+
b αn

1− hk fn(c(tk))
4kWn

write the above equation

ĉn(tk + hk) = cn(tk) + hk f̂n(c(tk))cn(tk) + ĝn(c(tk))4kWn.

Since

f − f̂ = −h f2

1− hf

and

g − ĝ = −h bαnf

1− hf
So,

c(tk + hk)− ĉn(tk + hk) = cn(tk)− ĉn(tk)

+ hk
[
fn(c(tk))− f̂n(c(tk))

]
cn(tk)

+ [gn(c(tk))− ĝn(c(tk))]4kWn(tk)

but cn(tk) = ĉn(tk) and 4kWn(tk) =
∫ tk+1

tk
dW (s) and∫ tk+1

tk

[gn(c(tk))− ĝn(c(tk))] dW (s) = 0, (martingale),

pulling the expectation, we get

‖E [cn(tk + hk)− ĉn(tk + hk)] ‖N

= hk‖E
(
[fn(c(tk))− f̂n(c(tk))]cn(tk)

)
‖N

= h2
k

∥∥∥∥E [ f2
n(c(tk))

1− hk fn(c(tk))
cn(tk)

]∥∥∥∥
N

= h2
k

∥∥∥∥E [ (−σ2 λn + a1)
2

1− hk fn(c(tk))

]∥∥∥∥
N

− 2 a2 h
2
k‖E[

(−σ2 λn + a1)

N∑
n=1

c2n(tk)

1− hk fn(c(tk))
]‖N

+ h2
ka

2
2‖E[

(

N∑
n=1

c2n(tk))
2

1− hk fn(c(tk))
]‖N

≤ Kc
0 (VN (c(tk)))h

2
k. (19)

where

VN = (−σ2 λn + a1)
2

+ 2a2(σ
2 λn − a1)‖u‖2L2(D) + a22 ‖u‖4L2(D). (20)

λn = n2 φ2

l
, and D = [0, l]. Thus the approximation solution ĉ is

mean consistent with rate r0 = 2.

VI. CONCLUSION

By analyzing appropriate N -dimensional truncations of the orig-
inal semi-linear heat equations (18), we can verify the asymptotic
stability of random Fourier series solutions with strongly unique,
Markovian, continuous time Fourier coefficients under the presence
of cubic nonlinearities. For this purpose, we introduced and studied
an appropriate Lyapunov. The analysis is basicly relying on the fact
that all estimations of moments of Lyapunov functional are made
independent of dimensions N of their finite-dimensional truncations.
Thus, the techniques of our proof are finite-dimensional in character,
however the conclusions can be drawn to the original infinite-
dimensional semi-linear equation. Also, in this article, we showed
that the approximation solution is mean consistent with rate r0 = 2.
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